| | is is held in a container by a moveable piston and thermal energy is supplied to the at it expands at a constant pressure of 1.2×10^5 Pa. | |------|---| | | thermal energy piston | | | volume of the container is 0.050 m^3 and after expansion the volume is 0.10 m^3 . The value supplied to the gas during the process is $8.0 \times 10^3 \text{ J}$. | | (i) | State whether this process is either isothermal or adiabatic or neither. | | (ii) | Determine the work done by the gas. | | | | This question is about thermodynamic processes. 1. | vemp | emperature. | | | | | | |-------------------------|------------------------------|---|--|--|--|--| | (a) | _ | Explain what <i>thermal energy</i> and <i>temperature</i> mean. Distinguish between the two concepts. | The a | £-11 | in a simula madal man ha naad ta astimata tha misa in tamu anatura afa muman | | | | | | i ne i | IOHOW | ing simple model may be used to estimate the rise in temperature of a runner | | | | | | | | to thermal energy is lost. | | | | | | assur
A clo | ming n | ontainer holds 70 kg of water, representing the mass of the runner. The water is | | | | | | assur
A clo
neate | ming n
osed co
ed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. | | | | | | assur
A clo
neate | ming n | ontainer holds 70 kg of water, representing the mass of the runner. The water is | | | | | | assur
A clo
heate | ming n
osed co
ed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. | | | | | | assur
A clo
neate | ming n
osed co
ed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. | | | | | | assur
A clo
neate | ming n
osed co
ed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. | | | | | | assur
A clo
heate | ming n
osed co
ed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. Show that the thermal energy generated by the heater is $2.2 \times 10^6 J$. Calculate the temperature rise of the water, assuming no energy losses from the | | | | | | assur
A clo | ming nosed coed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. Show that the thermal energy generated by the heater is $2.2 \times 10^6 J$. | | | | | | assur
A clo
heate | ming nosed coed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. Show that the thermal energy generated by the heater is $2.2 \times 10^6 J$. Calculate the temperature rise of the water, assuming no energy losses from the | | | | | | assur
A clo
neate | ming nosed coed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. Show that the thermal energy generated by the heater is $2.2 \times 10^6 J$. Calculate the temperature rise of the water, assuming no energy losses from the | | | | | | ssur
A clo
neate | ming nosed coed at a | ontainer holds 70 kg of water, representing the mass of the runner. The water is rate of 1200 W for 30 minutes. This represents the energy generation in the runner. Show that the thermal energy generated by the heater is $2.2 \times 10^6 J$. Calculate the temperature rise of the water, assuming no energy losses from the | | | | | | | The temperature rise calculated in (b) would be dangerous for the runner. Outline three mechanisms, other than evaporation, by which the container in the model would transfer energy to its surroundings. | | | | | |-----|---|--|---------|--|--| | | | | • | | | | | | | | | | | | ••••• | | • | • | | | | | | | • | | | | fin | rther n | process by which energy is lost from the runner is the evaporation of sweat. | | | | |) | (i) | Percentage of generated energy lost by sweating: 50% | | | | | | | Specific latent heat of vaporization of sweat: $2.26 \times 10^6 \text{ J kg}^{-1}$ | | | | | | | Specific latent heat of vaporization of sweat: $2.26 \times 10^6 \text{ J kg}^{-1}$
Using the information above, and your answer to (b)(i), estimate the mass of evaporated from the runner. | f sweat | | | | | | Using the information above, and your answer to (b)(i), estimate the mass of | f sweat | | | | | | Using the information above, and your answer to (b)(i), estimate the mass of | f sweat | | | | | | Using the information above, and your answer to (b)(i), estimate the mass of | f sweat | | | | | | Using the information above, and your answer to (b)(i), estimate the mass of | f sweat | | | | | (ii) | Using the information above, and your answer to (b)(i), estimate the mass of | | | | | | (ii) | Using the information above, and your answer to (b)(i), estimate the mass of evaporated from the runner. State and explain one factor that affects the rate of evaporation of sweat from | | | | | | (ii) | Using the information above, and your answer to (b)(i), estimate the mass of evaporated from the runner. State and explain one factor that affects the rate of evaporation of sweat from | | | | **3.** This question is about the thermodynamics of a heat engine. In an idealized heat engine, a fixed mass of a gas undergoes various changes of temperature, pressure and volume. The p-V cycle ($A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$) for these changes is shown in the diagram below. (a) Use the information from the graph to calculate the work done during **one** cycle. (b) During one cycle, a total of 1.8×10^6 J of thermal energy is ejected into a cold reservoir. Calculate the efficiency of this engine. **(2)** **(2)** (c) Using the axes below, sketch the p-V changes that take place in the fixed mass of an ideal gas during one cycle of a Carnot engine. (Note this is a sketch graph – you do not need to add any values.) (d) (i) State the names of the two types of change that take place during one cycle of a Carnot engine. |
 | | | |------|-------|--| | | | | | | | | |
 | | | | | | | | | | | | | ••••• | | | | | | | | | | **(2)** **(2)** Add labels to the above graph to indicate which parts of the cycle refer to which (ii) particular type of change. **(2)** (Total 10 marks)